http://old.computerra.ru/xterra/272253/В античном мире не было проблем с соответствием между математическим и физическим аппаратами: материалистические теории древних греков были наивными, умозрительными и математического обоснования не требовали, а вершина математической мысли греков - идеи Архимеда - к физическим теориям отношения не имели и предназначались для нужд геометрии.
Однако уже начиная с Нового времени, математика и физика не могут жить друг без друга. В самом буквальном смысле: Ньютон разработал матанализ именно как математический аппарат для своих физических открытий и даже философских идей. Кстати, сэр Исаак был очень недоволен Лейбницем, который сделал анализ понятным, доступным и алгоритмическим, - по мнению Ньютона, высшая математика должна была быть эзотеричной [Я уж молчу про анализ Ферма, основанный на алгебраической бесконечно малой, о котором нужно рассказывать отдельно]. Ньютон, по обыкновению того времени, зашифровал свое "научное завещание" в латинской анаграмме. Единственная разумная расшифровка этой анаграммы выглядит примерно так: "Полезно решать дифференциальные уравнения". Следующие два века действительно прошли под знаком математического анализа и дифференциальных уравнений - мир представлялся французским математикам, лидерам тогдашней науки, гигантской системой дифференциальных уравнений. Стоит только решить ее, и развитие Вселенной будет предсказано точно и достоверно. К этому мировоззрению относится и гордое лапласовское "В этой гипотезе я не нуждался" в ответ на замечание Наполеона о том, что система мира Лапласа не предусматривает Бога.
Во второй половине девятнадцатого века маятник качнулся в другую сторону. Развитие математики несколько опередило развитие физических теорий. Самый яркий и широко известный пример - неевклидовы геометрии Лобачевского, Бойяи, Гаусса и позднее примкнувшего к ним Римана. Поначалу эти теории всего лишь закрыли вопрос с пятым постулатом Евклида [Пятый постулат равносилен утверждению, что через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной. Евклид сформулировал его запутанно и многословно (в отличие от других, кристально ясных постулатов). Многие математики потратили кучу сил и времени на попытки вывода пятого постулата из остальных постулатов евклидовой геометрии], продемонстрировав, что он не выводится из остальных аксиом, - результат интересный, но вряд ли сам по себе имеющий хоть какое-то прикладное значение. Но впереди был Эйнштейн, который, опираясь на работы классика геометрии Минковского, показал, что Вселенная, на самом деле, имеет переменную кривизну, а школьная евклидова геометрия, увы, всего лишь абстракция.
Вопрос к автору раздела. Решение каких не решенных до сих пор Теорий из физики и математики (Задачи тысячелетия (Millennium Prize Problems) etc.) было бы для Вас наиболее значимо и интересно?